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SUMMARY 

Approximate analytical solutions describing the distribution of the concentra- 
tion of the chromatographic fronts for arbitrary convex and concave isotherms are 
presented_ The solutions, obtained by an integral method, make it possible to derive 
relationships describing the movement and broadening of chromatographic fronts at 
non-linear isotherms. In particular, the values of time (length) required for establishing 
the constant configuration of the chromatographic front (steady stage) can be derived. 

The solutions obtained are compared with the known ones for slightly curved 
isotherms and those describing the stationary front at convex isotherms. The com- 
parison shows the approximate solutions to have a good accuracy (ca. 5 %)_ Theoretical 
and experimental curves are in good agreement_ 

INTRODUCTION 

The extent of broadening of chromatographic fronts accompanying the move- 
ment of solute through a porous medium is determined by the finite rate‘ of mass 
transport between the phases (kinetics) and by the longitudinal diffusion coefficient. 
The degree of influence of these factors on broadening depends on the form of a 
distribution isotherm. The quantitative description of the effects of non-linearity of 
the isotherm can be estimated by solving the differential equations of the theory of 
chromatography, i.e. the mass balance equation and the sorption kinetic equation. 
These equations have been analytically solved for the case of a linear isotherm’.‘. In 
the case of convex and concave isotherms with a small deviation from linearity the 
approximate analytical solutions describing the distribution of concentration in the 
chromatographic peak3*’ and front5 have been obtained. For the same non-linear 
isotherms the analytical relationships describing the movement and broadening of 
the peak4.64 and front9.10 have been derived by moment analysis. For convex iso- 
therms the asymptotic (t --f co) solutions of the running-wave type, i.e. steady stage 
of the front movement, are known”*“. 

In this paper the distribution of concentration in the chromatographic frontI 
is described. By using this distribution in the integral method one can calculate the 
concentration profile at any moment and describe the movement and broadening of 
the front for arbitrary convex and concave isotherms, including Freundlich isotherms. 
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Such a distribution of concentration is used here in two variants of the problem: 
equilibrium frontal chromatography at D f 0 and non-equilibrium frontal chroma- 
tography at D = 0, where D is the coefficient of longitudinal diffusion. 

THEORETICAL 

A basic equation of equilibrium frontal chromatography at D f 0 for a semi- 
restricted column (0 < x -C 00) is 

aa ac ac a2 c 
-- 

at + at f”~=D~ a = f(c) (1) 

with the initial and boundary conditions 

c (0, t) = 1 c (x, 0) = 0 c(Go,t)=O (2) 

where c = c’/cO; a = d/c,-,; c' is the concentration of the solute in the mobile phase; 
a' is the mass of the solute in the stationary phase per unit volume of the mobile 
phase; co is the concentration of the solute at the column input (at x = 0); x is the 
coordinate: t is the time: u is the linear velocity of the mobile phase; and f(c) is the 
isotherm equation. 

In dimensionless time t = 22&/H and coordinate 17 = ~-V/H the mass balance 
equation in eqn. 1 can be rewritten as 

afcc) ac ac a+ ___ - 
at f at +Xi=y (3) 

where H = 2D/u, the height of the equivalent theoretical plate (HETP). 
To solve the non-linear eqn. 3 for the case of a non-linear isotherm f (cc), we 

can apply a method of integral ratios’4=15, but with the difference that in place of the 
moving concentration boundary for the point of the front at height c = 0, we intro- 
duce the moving boundary 6 (t) for the point of the front at height c = 1 (Fig. 1). 
Thus the concentration profile will be determined by the relationship’3: 

Cl%4 = 1, 1146; c (q, t) = exp l--b2 (t) (7 - @2] 7j > 6 (4) 

The curvature of the concentration profile c (q, t) at any point 17 > 6 (t) is deter- 
mined by the tune-dependent coefficient b (t). The width (T (dispersion) and the centre 
of gravity ?j (Fig. 1) are determined by equations for the statistical moments of the 
curve -@c/&j): 

~=(II-?)2=S(r)-i)l(-~)d?=(1 -:)-$ 

(5) 

(6) 



THEORY OF NON-LINEAR FRONTAL CHROMATOGRAPHY 313 

Fig. 1. Frontal concentration curve c (q, t) and the corresponding curve -(Sc/aq): 6 (t), moving con- 
centration boundary for c = 1; q, position of the gravity centre (S, = &); a, dispersion of the curve 
-(qw. 

The form of the function 6 (t), 6 (z) is determined by the requirement that eqn. 4 
should satisfy two i&e,-1 ratios of the zero and first orders describing the law of 
conservation of matter. An integral relationship of the n-th order is derived from eqn. 
3 by muItipIying the left- and right-hand sides of the equation by q”, with a subsequent 
integration over 7j from 6 to co: 

d 
n=o,- 

dt d I 
.a (a t c) d q + [l f f(l)] $$ = 1 

d 
n=l,- 

dz 6 s 
-q(a+ c)dq f II -i- f(l)&$= 1+6+ -cdq 

J‘ (8) 
d 

An arbitrary convex and concave isotherm can be approximated by a polynominal 
with an arbitrary degree m, 

f(c)=ycfyl&~Cm (9) 

where y is the Hem-y coefficient; &I and m characterize non-linearity of the isotherm, 
e.g. at E~ > 0 and m > 1, or at .Q < 0 and m -c 1, the isotherm is concave, and at 
.E~ -C 0 and m > 1 or at E~ > 0, m < 1, the isotherm is convex; if y = 0, y1 E~ > 0, 
and eqn. 9 becomes the Freundlich isotherm. 

If eqn. 9 does not approximate a real isotherm closely enough, the number of 
terms may be increased and the de=ee m changed. The form of the obtained solutions 
(eqns. 4 and 10-12) remains unchanged, and only the constants E, m, and k vary. 

By substituting eqn. 9 into eqns. 7 and 8 and taking integrals by means of 
eqn. 4, we get a solution of the ordinary differential eqns. 7 and 8 in the form13: 

y-lnll+yl=kt,;t,= 
z . Yl El 

(1 + y)(l f 4 ?&= 1+y (10) 

_= (G&)Y 42 
26 ~(1 - l/G) 

(11) 
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where 

v= 
& (1 - l/drn) 

J 

1+ E/l/m 
(TI -d);k= 

[E (1 - l/G)]’ 

31 
+ $) (1 + s) - (1 + +r (12) 

m 
For the linear isotherm E = 0 

s=q- 42r’ 
V 

,rl=-c (13) 
-- 1 
JT 

Eqn. 4, where the dependence of 6 (r), 6 (t) is determined from eqns. 11 and 12 and 
the transcendental eqn. 10, holds for convex and concave isotherms of any non- 
linearity E, in. At y = 0, y1 .sr > 0, the solution is valid for the case of the 
Freundlich isotherm_ 

As the front begins to move, i.e. at short times, z, < (l/2@ (when I y I < 1); 
using an expansion In I 1 + y [ in eqn. 10, we get from eqns. 10 and 11: 

y=d2kq, *= 
(1 f s) d2kq 

.- ,rj=t,+dXkt, (14) 
26 & (1 - l/62) 

From eqns. 13 and 14 we can see that at the stage of initial movement, the width 

G N 1 y 1 of the sorption front increases proportionally to 4 not only for linear but 
also for convex and concave isotherms. 

Let us consider in detail the dynamics of broadening of the chromatographic 
front for convex isotherms. It is well known”~” that for a convex isotherm, there 
exists an asymptotic (t + CXI) solution of the running wave type, i.e. a steady stage 
of the front movement with velocity v, when the function c depends on one variabie 
z only, where z = x - vt. By using eqn. 10 it is easy to determine the time, 2rf at 
which these conditions are established: at m > 1, sI -=c 0, or m < 1, s1 > 0,limy = - 1 

T-m 

1 f s/t/m 
lims=rl+ s(l_ l/d-+ ; lim + = 2(1 t e) 
T-brn r-cc2 &&(--I + l/x&) 

(15) 

c (z) = exp ( --b2 23 ; z = 1: - d 

Within an error limit>f 1% (ySt = -0.99), the width of the front o - 1 y I (eqns. 6 
and 11) becomes constant at 2, > <; from eqn. 10 we then obtain 

P 3.6 
C= (lfY)(lf&) =k (16) 

The moving boundary 8 and the centre of gravity ?j of the front (Fig. 1) move with 
constant velocities *- 

dS dij 1 -=-= 
dt dz 

d6 drj 1 
1 )f(l)‘T&=F= (17) 
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This is the well-known Wilson reIationship*2*16, which determines the velocity of the 
front movement at the steady stage. The estimate of eqn. 16 indicates that the time 
at which the steady stage is established is proportional to H/S, which agrees with the 
values obtained in refs. 5, 9 and 10 at m = 2, y = yr for convex isotherms of small 
non-linearity I E I < 1. Eqn. 16 also holds for isotherms with large deivaitions from 
linearity, e.g. 

m = 2, y = yr; E = -0.5, tf’ = 9.2,6” = tf’ + l+4~~_=48 
& (1 - l/2/;;;) -. US) 

E = -0.4,<:’ = 39.6,6” = 19 

In the case of a concave isotherm (E > 0 and m > 1, or E < 0 and m < 1) the sorption 
front widens progressively with time. From eqn. 12 it follows that y > 0, and at long 
times rl > (100/k) (when y > In I 1 t y I in eqn. 10) we have 

(19) 
. 

The velocities of movement of the centre of gravity G and moving boundary 6 are 

da -= 
dr, 

l_ (l+/fi)k d+j 
;-=l+k 

&(l - l/A+ dtl 

So, in the case of a concave isotherm the width of the sorption front, o, increases 
proportionally to f (eqn. 19). 

To check the accuracy of eqn. 4, where b (z) and 6 (z) are determined from 
eqns. 10-12, we have undertaken a comparison of that approximation with the known 
solution1 for a linear isotherm: 

(21) 

and with a solution obtained in ref. 5 for the isotherm yc + y&c2 with a small non- 
linearity I E [ < 1. The solution in ref. 5 was obtained by means of integral transforma- 
tion of the function c (Q t), which turns the non-linear mass balance equation into 
the linear one relative to a new function. Written in the terms of this paper, the solu- 
tion5 is: 

cxp 
C(% t) = 

+ erfc +- (g f p/M 
(22) 

2 + exp fi erfc G (g + p/h) - erfc G (p/h - g) 
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V 
- 

p=1;1-~~, h= 
csh 

f El), g = - 
1-i-E 

The solid line of Fig. 2 shows the concentration profiles at an arbitrary moment, 
t/(1 f 7) = 100, calculated for the linear isotherm from eqn. 21 (curve 2) and for 
slightly non-linear (E = &O-l) isotherms y (c f E c2) from eqn. 22 (curves 1 and 3). 
A comparison of these curves with the corresponding curves (dotted) calculated from 
eqns. 4 and IO-12 indicates a good approximation accuracy (“5 %) both for linear 
and slightly non-linear convex and concave isotherms. Note that al. the given moment 
:/(l t 7) = 100 for a convex isotherm with m = 2 and E = -0.1, no steady stage 
of the front movement is yet established: (P/(1 + ~))s=-o_I = 860. 

40 60 80 100 120 140 9 

Fig. 2. Frontal concentration curve c (q, t) at r/l i y = 100; 1, for the concave isotherm E = 0.1 
(n? = 2); 2, for the linear isotherm E = 0; 3, for the convex isotherm E = -0.1 (m = 2). 

The accuracy of the approximate solution (eqn. 4) for isotherms with large 
non-linearity, I E 1 > 0.3, can be established by comparing it with an asymptotic solu- 
tion obtained from eqn. 3 at long times for convex isotherms y (c + E c2), when the 
front movement is in its steady stage: 

ac 
&<O,t+co-= - 

1 dc ac dc 

at 1 + f(1) ‘dk)F= dz 

m=2 inc-lnll-cc= * + constant 

From the estimates given in eqns. 16 and 18, the steady stage occurs at m = 2; 

( 9’ 

1fY > E= -0.5 
= 4.2, t” ) 

( 1fY 
= 860. 

E= -0.1 

(23) 

The solid lines in Fig. 3 show the concentration fronts calculated from eqn. 23 for 
strongly non-linear (E = -0.5, curve 1) and slightly non-linear (E = -0.1, curve 2) 
isotherms. The dotted lines are those calculated from eqns. 4 and 10-12. The agree- 
ment is good for isotherms with both large and small non-Iiearity. 
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Fig. 3. Concentration fronts in the stationary regime: (1) for strongly non-linear convex isotherm 
E = -0.5, m = 2, t/l + y = 10; (2) for slightly non-linear convex isotherm E = -0.1; m = 2, 
r/l + y = 1800. 

Non-equilibrium frontal chromatography will be exemplified by means of the 
mass balance equation at D = 0: 

aa ac 
at+ at 

ac -= 
+“ax O 

and the kinetics equation, where the non-equilibrium 
expressed through the parameter Z, the delay path12: 

a = f(c) - Is-g 

(24) 

of sorption processes is 

(25) 

To solve eqns. 24 and 25, let us substitute the latter into the former and write down 
the resulting equation in the dimensionless coordinate q = x/Z and time t = U/Z: 

i?f(c) ac a2 f(c) ac ~ - -- 
at + at + atar = a7 (26) 

Integral ratios are derived from eqn. 26 by means of eqns. 4 and 9, using the procedure 
described. in the practically important case of y. y1 > I, the equations for b (r), 6 (r) 
derived from eqns. 26 have the form of eqn. 10-12, with the difference that coor- 
dinate and time are expressed not in D/U values, but in terms of I. All the conclusions 
and estimates obtained for equilibrium frontal chromatography are applicable without 
alteration to non-equilibrium frontal chromatography. 

Let us consider an approximate solution describing the leading (sorption) and 
trailing (desorption) fronts of the wide feed band at the column outlet in the case of 
arbitrary convex and concave isotherms. Here we write the mass balance equation in 
the form of eqn. 24 and the kinetic equation, where the non-equilibrium of the sorp- 
tion process is expressed through the delay time t* of establishing equilibrium be- 
tween mobile and stationary phases2*“, in the form of 

df ac 
a = f(c) - t* --- 

dc at (27) 
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By substituting eqn. 27 into eqn. 24 and using the dimensionless variables T = t/t* 
and X = .+-r*, we obtain the main equation 

af(c) ac ac a2 f(c) 

aT 
+vaT’m= aT2 (28) 

For an approximate solution of eqn. 28 we use, as previously, the integral method 
with the moving boundary for the point of the front at height c = l/T’ for the sorption 
front cj, and Td for the desorption cd (Fig. 4). The moving boundaries T, and Td for 
the outlet curves depend not on time but on the distance X - Ts,d (X). 
The solutions c,,d have a form similar to eqn. 4: 

, 

TtT, cs=exp[-b2s(X)(T-T~)2];T>Ts c,= 1 (29) 

T<T, Cd= 1; l‘>Td Cd=eXp[-b2,,((X)(T--T,)2] 

Fig. 4. Output concentration curve for the wide feed band: T ,.*, moving boundaries of concentration 
c_d = 1; TSF..*, position of the gravity centres of the fronts c.,~. 

The dependences b, (X), Ti (X) (i = s or d) are derived from two integral ratios 
of the zeroth and first orders (n = 0 and n = 1) for each front of c, and cd, respec- 
tively, 

d 
-I 

91 

’ = ” d X li 
c,dT+ (-l)g $j- = (-l)g [I + f(l)1 (30) 

d 
n=lydX,, 

dT 
- ~TcidT+(-1)9Ti&- p’ ki + f(ci)l d T= 

Pi 

= (-lJg @-f(l) + 11 t f (111 T,} (31) 

i=s,g=l,(p,q,)=(--ooTS);i=d,g=2,(pdqd)=(Tdco) 

An integral ratio of the n-th order is derived from eqn. 28 by a multiplication by T” 
and further integration over T from pi to qr_ At the outlet of the column the sorption 
front c, appears at T > 0, and with a very small error the integration limits (0, T,) 
can be replaced by the limits (-co, Ts). 
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By substituting eqn. 29 into eqn. 31 and using the isotherm eqn. 9, we obtain 
the solutions of ordinary differential equations: 

G 
- = (-l)g (Lr - Ti), ALI = 11 + f(I)] X* 
2 bi 

(32) 

where 2% is the distance from the initial position of the front ci to the place of its outlet. 
The moving boundaries Ti in eqn. 32 are determined from a transcendental equation 

JJ, - In I I -+ yi I = KLiy K = 
2 (1 - l/G)2 

( 

(33) 

(1 t E) i+F+E)(;-l) 

where 

y* = E (1 - l/d4 
Y 

(Ti - Li) 
-+t 
l+Y 

(34) 

The time of outlet, Ti, and the width, oi, of the front ci are determined by the 
first TI (centre of gravity) (Fig. 4) and second central o12 (dispersion) moments10J8. By 
substituting eqn. 29 into the known ratios determining statistical moments, we get: 

0, = ~(T-~)2=+ljl-~ 
I 

(35) 

(36) 

The relationship 35 coincides with that obtained in refs. 10 and 18 for slightly curved 
isotherms, but eqn. 35 is also applicable to isotherms with large non-linearity. 

By using eqns. 32-34, it is easy to determine the Iength, Lsr, at which the 
steady stage of the front movement is established. This takes place for the sorption 
front c, when the isotherm is convex and for the desorption front c, where the iso- 
therm is concave. From eqn. 3-1 it follows that, within I%, the frontal width c N I y 1 
(eqns. 32 and 36) becomes constant (P = -0.99) at L > Lf : 
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At large distances, Li > 100/K (when y, > In i 1 + yi I), a progressive widen- 
ing of the front is described by the ratios derived from eqns. 32-36 (r >> !) 

y > 0, yi = KL,, oi = 
l&(1 -l/G) IL, 

V 
-___ 
4 - - 1 (1 + &) 
S-c 

(38) 

EXPERIMENTAL 

To test experimentally the theoretical eqns. 29 and 32-34, the outlet chroma- 
tographic curves were obtained for the wide feed band on ionexchange columns 
(0.435 cm2 in cross-section, H = 0.8 cm) of different length L?? during Caz+-MgZ’ 
exchange. A detailed description of experimental procedure is given in refs. 18 and 
19. The experimental ion exchange isotherm Ca*+ -MgZ+ is shown in Fig. 5 (points)_ 
The curve of Fig. 5 is approximated by eqn. 9 (solid line) with the parameters y = y1 = 
25, El = -0.31, m = 1.4. 

ffcl 
20 

Fig. 5. Calcium-magnesium exchange isotherm: points, experimental; line, y (c + Ed P) dependence, 
y = 25, Ed = -0.31, m = 1.4. 

RESULTS AND DISCUSSION 

From the parameters of the isotherm, y, E and m, it is easy to calculate the 
coefficient K in eqn. 33. By substituting into eqn. 33 the known values of LY1 (the 
distances travelled by the sorption c, and desorption c, fronts), one can find a solution 
for yI. Then from eqn. 34 one can evaluate Ti (LJ and from eqn. 32 determine the 
coefficient b, (L,). The concentration profile ci is calculated from eqn. 29. 

Figs. 6 and 7 show concentration curves calculated for different 2% as de- 
scribed above (solid line). The points show experimental outlet curves obtained from 
columns of merent length .S?. The agreement between theoretical and experimental 
curves ci indicates that the approximate solutions of eqns. 29 and 32-34 have a good 
accuracy. 
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Fig. 6. Output concentration front c,: points, experimental; line, calculation; 1, 2, = 8.4cm; 2, 
p= = 13.4 cm; 3,2% = 17.7 cm; 4, _%‘s = 22.8 cm. 

Fig. 7. Output concentration front cd: points, experimental; line, dependence; 1, -!Z?d = 36.3 cm; 2, 
_!+?‘a = 41 cm; 3, Igd = 45.3 cm; 4, &??* = 50.4cm. 

From eqns. 10-12 or 32-34, the simple ratios 16 and 37 follow, and these 
determine the time (length) required for the steady stage of chromatographic front 
movement to be established_ The parameters 5’ and LSr are proportional to HETP-W 
and inversely proportional to Ez. A criterion of the steady stage is constant width of 
the front. This width is determined by a dispersion, G, of the corresponding concen- 
tration curve (Fig. 1). 

While the fronts are widening the width depends on the time or the distance 
travelled by the front (eqns. 19 and 38). 

Regularities of movement and widening of the front are described at short 
times by eqns. 13 and 14, and at long times by eqns. 1.5, 17, 19 and 20. 

The solutions 4 and 10-12, and 29 and 32-34 permit the calculation of the 
distribution of concentration along the column, or the concentration curve at the 
column outlet, if the parameters of the HETP-If column and the isotherm 0. E, m) 
are used. 

CONCLUSIONS 

Comparison with the known theoretical solutions, eqns. 21-23, and with the 
experimental data shows that to a good accuracy (-5%) the obtained approximale 
solutions, eqns. 4 and l@-12, and 29 and 32-34, describe chromatographic fronts for 
the linear and non-linear (convex or concave) isotherms. 

The proposed method can also be used to obtain the equation that describes 
the chromatographic front in the case of S-shaped isotherms20*21. 
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